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J 
1. Introduction 

The analogy between the problems of stretching and of bending of 

plates has  been known for  more  than half a century. 

(1)  the f i r s t  application of this analogy w a s  made by Wieghardt in a paper 

published in 1908 and dealt with a plate of simply connected shape subjected 

to boundary loading. Other contributions a r e  due to Westergaard and Mind- 

lin (1) who considered the problems of plane s t ra in  and of plate bending for  

a multipliconnected domain. 

include surface and boundary loads,  dislocations and thermal  effects. 

u se  of the analogy seems to be limited, however, to the consideration of 

the deflection of the plate in the bending problem and of Airy's  s t r e s s  function 

in the stretching problem. In fact a more  general analogy exists between 

the two problems and is a particular case  of the static geometric analogy 

in shell theory (2) .  

basic equations of the two problems whereby one se t  of equations is t rans-  

formed into the other se t  by interchanging according to a cer ta in  co r re s -  

pondence the dependent variables of the two problems. \The purpose of this 

paper is to present this duality in its totality including in the stretching 

problem displacements,  s t ra ins ,  and in-plane changes of curvature and in 

the bending problem s t r e s s  functions, s t r e s s  couples and t ransverse  shears .  

In both problems,  the displacement and the s t r e s s  function methods of solu- 

tion, displacement and force boundary conditions and simply and multipli- 

connected plates a r e  considered. 

Accordingto Mindlin 

The la t te r  generalized the treatment to 

The 

It takes the fo rm of a complete duality between the 

- 

The problem of plane s t ra in  is not treated directly but can be obtained 

and 3 into E 
2 f r o m  the stretching problem by changing E into 

1 - Y  - y where  E is Young's modulus and 3 Poisson's ratio ( 3 ) .  This cor -  1-3 
respondence between the problems of plane s t ra in  and of stretching 

of plates,  o r  generalized plane s t r e s s ,  does not agree with that given in 



k 
reference (1) through eqs. 2. 7. 

mation. The duality for  anisotropic plates is a1 s o outlined. 

The latter seems to be only an approxi- 

The presentation of the stretching-bending analogy w i l l  be made 

by specializing to the case  of the plate general  equations developed for 

a shell i n  orthogonal curvilinear coordinates (4). Cartesian coordinates 

will be used but when needed formulas in curvilinear coordinates will be 

specialized to the case  of a curved boundary. 

2. Basic Equations 

a )  Equilibrium Equations. S t ress  -S t ress  Function Relations. 

The differential equations of equilibrium of a plate may 

be written in the fo rm 

N1l ,  1 f NZ1, 2 + P1 = 0 1-1  

1-2 

1-3 

N12, 1 i- N 2 2 ,  2 p2 = O 

N12 = N21 

M 1 l ,  1 21,2 

*1,1 Q2, 2 i- p3 O 

t M  - Q 1  = O  1-4 

M t M  - Q2 0 1-5 

1-6 

1 2 , l  22,2 

where N. .  a r e  the in-plane s t r e s s  resul tants ,  Q. the t ransverse  shea r s ,  

M..  the s t r e s s  couples, p, the components of the applied load vector p 

per unit a r e a  of the middle plane of the plate,Figs. 1 ,  2,and where a 

comma followed by an index i indicates differentiation with regard  to 

the Cartesian coordinate x . 
i 

- 1J 1 

‘J 1 

Eqs.  1 a r e  supplemented hy the additional relation 

1-7 M12 = M21 

Denoting by N’X the general  solution of the equilibrium equations of the i j  
stretching problem for zero surface load we can write 

2-  1 Nh = Y ,  22 

2 



N*22 = \y, 11 2-2  

where \y is Airy's  s t r e s s  function. 

cular solution of the equilibrium equations is obtained by means of the 

integrals 

If surface load is acting, a parti- 

1 
X 

J1 = (Pl(t,X2)dt 

xo (x2 1 

3-1 

3-2 

the general  solution for the s t r e s s  resultants takes then the fo rm 

I 4- 1 
N1l = N *  11 - J1 

N22 = N $ 2  - J2 4-2  

4- 3 
12 

N12 = N* 

If the load components p 

ing to the relations 

and p 1 2 
derive from a potential function V accord- 

, 

P 1 = - v  , 1  

P2 = -v,2 

It is possible to write 

5-1 

5-2 

J = J  = - V  6 

The general  solution of the equilibrium equations of the bending problem 

may  be wri t ten in t e r m s  of a particular solution and of 2 s t r e s s  functions 

1 2  

3 



G and G in the form 1 2 

M l l  = G 
- D(K2 t 3 K l )  

2 92 

b 

7- 1 

- - D(K1 + I ’ K 2 )  7 -2  

7-3 

M22 - G1, 1 

M12 = M21 = - - ( G  1 f G 
2 112  211 

Q, = F - D(K2 t # ’ K  ) 
31 2 1 , l  

7-4 

- D(K1 t Y K  ) 7-5  
2 92 

Q 2 = - F  
3 , l  

where D i s  a constant that wi l l  be identified with the flexural rigidity of 

the plate, 

and K and K 
1 2 

a r e  two functions satisfying the differential equation 
P, 

8 3 t ( K 1 t Y K )  = -  
( K 2  bJ K1) ,  11 2 , 2 2  D 

and a r e  otherwise a rb i t ra ry .  

on edges parallel to the x and x axes,  respectively,  a r e  1 2 

The effective t ransverse  shea r s  acting 

- - D(K2 t Y K ) 9-  1 
1 9 1  

- - D(K1 t Q K  ) 9-  2 

Q l e  = *I  + M 1 2 ,  2 - - G1,22 

2 1 , l  - - G2,11 2 , 2  = Q2 f M 

b) Strain-Displacement and Compatibility Relations. 

Let  u l ,  u2 and w be the components of the displacement 

be the rotation 
- 

vector u of a point in the middle plane of the plate, 

about the normal to the plate, E l l *  E22 and ( f12 t E21) be the in-plane 

and x = x be the flexural extensional and shear  s t ra ins  and x 

curvatures and twists. In addition to these s t ra ins  i t  w i l l  prove conven- 

ient to define additional s t ra in  quantities x and x associated with the 
13 23 

stretching problem. 

in the form (3 )  

W 
3 

11’ x22 12 21 

The strain-displacement relations may be written 

€ l l  = u  
1 1 1  

E,, = u  
2 , 2  

10-1 

10-2 

4 



1 4’ 

E.,,=%, =-(u 2 1 , 2  f u  2 ,1  1 

x = w  
13 391 

x23 = O3,2 

where 

1 
w3  = P 2 , 1  - u  1 , 2  1 

11 = - W , l t  

10-3 

10-4 

10-5 

10-6 

10-7 

10-8 x = - w  
22  8 22 

12 21 9 12 
10-9 x = x  = - w  

If we denote by x and x 
13e 23e 

originally parallel to the x 

= u  10-10 13e -x13  “12, 1 2 , l l  

10-11 

changes of in-plane curvature of lines 

and x 
1 2 axes respectively, we can write 

- X 

- -  - u  - 
23e -x23  -E21,2 1,22 

E 22,1 - E  12,2  - x  23 = o  

‘21,l - E  11,2  - x  13 = o  

X 

The in-plane s t ra ins  satisfy identically in the displacements the relations 

11-1 

11-2 

X - x  = o  11-3 23, 1 13 ,2  

13 23 
If x and x a r e  eliminated f rom eqs. 11 there resul ts  the usual 

compatibility equation of the stretching problem. 

f 2 2 , l l  - ( €12 tE21),12 +11,22 = o  
m-1- I 11t: - ~ui>ipai.iIuiIiiy equations of the bending probiem a r e  

X - x  = o  

X - x  = o  
2 2 , l  12 ,2  

2 1 , l  11 ,2  

12  

13-1 

13-2 

c )  Stress-Strain Relations. 

We consider a l inearly elastic homogeneous and isotropic 

5 



b 
plate of thickness h with Young's modulus E ,  Poisson's ra t io ,#and 

coefficient of thermal  expansion a. 

be written in the form 

The s t r e s s  - s t ra in  relations may 

14- 1 

1 t Y  € -  
12 - €21 = E h N 1 2  

11 + 5 2  
Mll  - M = D ( x  

0 

11 
- M  = D ( x  t 3 x  

M22 0 2 2  

M12 = 12 
= D ( l -  3 )X 

where 

Eh3 
2 D =  

1 2 ( 1 - 3  ) 

14-3 

14-4 

14-5 

14-6 

15 

and where & 

a n  increase t of temperature measured f rom some initial state. 

is an initial s t ra in  and M an initial s t r e s s  couple due to 
0 0 

Letting 

h /2  

16-1 
3 t =I t d x  o h  

-h /2  

h /2  

6t = - l 2  / t x 3 d x 3  

-h/2 h2 

and 
0 I t  x = -  

o h  

16-2 

16-3 

we can write 

6 



& 
€ = at 16-4 
0 0 

M = -D(1 t 3 ) x  16-5 
0 0 

3. Stretching-Bending Duality 

The basic equations of the plate separate into twouncoupled systems 

corresponding to the stretching and bending problems, respectively. 

There is a duality between the two systems of equations that is 

a particular case  of the static-geometric analogy of shell  theory where 

i t  is established, however, f o r  zero  surface load. The analogy may be 

generalized,in more  than one way, to include the case  of non ze ro  surface 

load. 

with the homogeneous solution of the equilibrium equations, i. e. the 

general  solution of these equations for zero distributed load. 

Fo r  this purpose the superscr ipt  * will denote quantities associated 

We define " E ' i l  and E,, through the relations 

.lr x" and x* through relations similar to eqs. 11 - 1 , 2  
13 23 

- x *  = o  
2 1 , l  - 13 

€ 
I 
I " * 

and x ' ~  and x through relations similar to eqs. 10-10, 11 I 13e 23e 
* * -r 

23 - €21,2  = x  2 3e 

17-1 

17-2 

18-1 

18-2 

19-1 

19-2 

It is then possible to wri te  the equations of the stretching problem in a 

way such that they are transformed into the equations of the bending 

problem and vice v e r s a  if corresponding o r  dual dependent variables of 

7 



1 the two problems are  interchanged, i f  9 is replaced by - 9 and - 
Eh 

is replaced by -D. The duality is summar ized  below. 

Stretching 

Equilibrium 

* = o  
N1l,  1 N21, 2 

* = o  
N12, 1 N22, 2 

Compatibility 

* - E  - x  = o  
12,2  23 

E 
2 2 , l  

* * - ‘21,l “11,2 t x  13 = o  

- * * 
23, 1 13 ,2  

- x  - X 

1 
K[U2 - 9 J  1 1 , 1 1  f 

* 
(J1 - 3J2), 275 = &22,11 - 

* 
5 2 , 1 2  t e l l ,  22 

S t r e s s  - Strain Relations 

* 1 *  * 
€ 2 2  - Eo = K ( N Z 2  -ql) 

“I 
N1 

N2 

EI 
€ 
1 

E 
2 

E; 

* 
2: 

K 

* 
1’ 

K 

J2 

V 

- X  
2; 

21 

12 

X 

X 

M1 1 

21 
-M 

M12 

M22 

*1 

- *2  

K1 

K2 

- 3  

Bending 

Compatibility 

-X t x  
2 2 , l  12, 

= o  

X - x  = o  
2 1 , l  11,2 

Equilibrium 

M t M  - Q, = 0 
21,2 11 , l  

t M  - Q 2 = 0  
22,2 

M 
12 ,1  

- - 
*1,1 *2,2 - -3 - 

22,22 
t M  

M1l,  11 + 2M12, 12 

Str e s 8 -Strain Relations 

MZ2 - M 0 = D ( x ~ ~  +- L)xll) 

a 



1 +3 6 = E  =- 
8’ 

12  21 Eh N12 

1 - 3  E = - -  
I 0 Eh o 

S t  r a i n -  D i sp lacemen t  

Rela t ions  

<< t-(J1 1 -3J2) E = u  11 1 , l  Eh 

1 
= u t-(J2 - 9  J1) 

J. 

2 , 2  Eh 

1 E = €  = - ( u  
12  21 2 1 , 2  t U 2 , 1 :  

E h j ’  

€ 
0 

0 
N 

1 
U 

2 
U 

w 3  

- Jl?, 1 
1 * -8- 

x = a  t -(J 
23 3 , 2  Eh 2 

.b 1. 

X 23e 

- U  

- ;: *r. = x  - 
13e 13 ‘12,l  X 

1 -- (J1 -9J2),  2 2 , 1 1  Eh U 

3 

0 

K 
0 

1 

r2 

3 

) l e  

Q2c 

M12 = M 21 . = D ( l  - V ) X  12  

M = -D(1 t J ) X o  
0 

S t r e s s  -Stress Funct ion  

Rela t ions  

M22 - - G1,l - D‘Y + 3 K 2 )  

M1l - - G2,2  - D(K2 t 3 K 1 )  

Q1 = F - D(K2 t 3 K  ) 
3 , 2  1 9 1  

Q 2 = - F  391 - D ( K 1 t Y K  2 ) 92 

1 
F3 = z ( G 2 ,  1 - 2)  

Q1e = Q1 + M12, 2= 

-G1, 22 1 9 1  

Q2e  = *2 M21, 1 

- D(K2tYK ) 

- - 

-D(K1 t v K  ) 
-G2, 11 2 92 

9 



). 

S t r  e 8 8 - S t r  e s s Funct ion  

R e la t io n s 

Curva tu re -Disp lacemen t  

Rela t ions  I * 
N1l = y 2 2  

- * 
N22 - y ,  1 1  

w, 12 
x = x  = -  

N12 N21 = - ‘y, 12 I 12  21 

The dua l i ty  indicated above  r e m a i n s  va l id  if the  a s t e r i s k  is a s s o c i a t e d  

ins tead  with the  dependent  v a r i a b l e s  of the bending problem.  

c a s e  we have 

In  this 

* 
M l l  = G 2 , 2  

= M l l  t D(K2 tVK1) 

* 
MZ2 = G 191 

= MZ2 t D(K1 t 3 K 2 )  

= Q 1  t D(K2 t v K  ) 
* 

392 1 , 1  
Q, = F 

* 
Q = - F = Q z  t D ( K 1  t 9 K  ) 

2 381 2 , 2  

* 
x* ’  and x are defined through the r e l a t i o n s  

11 22 

* * * 
11 +9x22’  M l l  - M = D(x 

0 

20-  1 

20-2 

20 -3  

20-4 

21-1 

21  -2 

which yield 



0’ x.+ = x l l  f K2 

X:$ = x22 + K1 

11 

22 

22- 1 

22-2 

of - x* x of Q:X etc. 
22’ l - 2 2  11’ 2 3  1’ 

It may be seen then that N 

4. 

is dual of - x* 
11 

Duality Between Methods of Solution. 

The duality between the methods of solution is a d i rec t  consequence 

of the duality between the basic equations. Thus the reduction of the 

stretching problem to a differential equation fo r  Q through use  of the 

compatibility equations is the dual of the reduction of the bending prob- 

l em to a differential equation for  w through use of the equilibrium equa- 

tions. These differential equations a r e  

A A \ y  = -  Eh AE. 0 + (J2 - p J l ) y l l  + (J1 - 3 J 2 ) , 2 2  

and 

2 3  

24 

A M o  p3 + -  -I___ 

- D  D 

where A is Laplace’s operator 

A( I = (  ) ,11 + (  ),22 25 

It is noted that if a bending problem dual of a given stretching problem 

is sought, the determination of the load p and 

K 2  which a r e  dual of J and J respectively. These a r e  determined 

through eqs. 3 and may involve a rb i t ra ry  functions of x and x respec-  

tively, a s  indicated by the l imits  of integration x (x ) and y (x, ). 

and p 

is made by means of K 
3 1 

1 2’ 

2 1’ 
If p, 0 2  r ? -  

derive f r o m  a potential V according to eqs. 5 and 6 the duality gives 2 

p3 - <=’- (1 i-9) A V  D 

where  the symbol <=> is used to indicate an equality obtained through the 

dual correspondence. 

and the dual solution for 

In such a case a particular solution by for  b y  P 
Ahur may be written as 



€ 0  ow <=>- - (1 t Y ) V  r D 

It is noticed that the effect of E 0 is s imi la r  to that of a fictitious loading 

corresponding to the potential V. 

If a stretching problem dual of a given bending problem is sought 

the load components p 1 and p 2 a r e  obtained through the duality relations 

1.1 pl<=> K 26- 1 

26-2 

K and K a r e  related to p through eq. 8 and may be determined in an 
1 2 3 

infinity of ways. F o r  example one m y  write 

K2 t 3 K 1  = c/dxl D /pg dxl 

K1 t Y K 2  =-\dx2 1 - c  /p3dx2 
D 

where c is an a rb i t ra ry  constant. 

a s  a particular solution of the plate bending equilibrium equations obtained 

by considering the plate a s  made of independent s t r ip s  paral le l  to the 

coordinate axes with the load p 

parallel  s t r i p s  in the proportions c and 1-c. 

of these s t r ip s  i s  arbi t rary.  

This type of solution may be interpreted 

divided between the two families of 3 
The type of end supports 

Another way of determining K and K consis ts  in taking 
1 2 

K = K  = K  
1 2  

and determining a particular solution of the differential equation 

12 



The load components p 

a potential V dual of -K.  

V <=> - K  27 

A particular solution for Aw i s  then 

and p 1 2 in  the dual problem derive then from 

M 
A W  = -O t (1 t Y ) K  

P D  

and the dual solution for A V  i s  

The solution of the stretching problem by the displacement method which 

expresses  the equilibrium equations in te rms  of the displacement com- 

ponents, has  a s  dual the solution of the bending problem by the s t r e s s  

function method which expresses  the compatibility relations in t e rms  of 

the s t r e s s  functions. These equations may be written in the form 

1 t Y  2(1 t 9 )  2(1 t 3 )  
= 0 28-1 

p1 - 1 - 9  0, 1 
Au t- 

1 1 - 9  ( U 1 , 1 t U 2 , 2 ) , l t  Eh 

= 0 28-2 2(1 t 3 )  2(1 t 3 )  6 
Eh ‘2-  1 - 9  0 , 2  t u  ) t 

1 t v  
Au t- 

2 1 - Y  ( u l , l  2 , 2  , 2  

and 

= 0 28-3 
1 - v  2(1 - 9  1 M 

1 t 9  091 
AG1 t- t G ) - 2D(1 - 9 ’ ) K  - 

1 t 3  ( G 1 , l  292 91 1 , 1  

M = o  28 -4  
1 - 9  . -  2(1 - 9  ) LLG t- + e  ,, (Lil ,  2, 2 j ,  - 2Dj l  - 3 )K 

2 , 2  1 t P  o,  2 

The above equations may be rewritten equivalently in the form 

1 , l  + % , 2  
U 

( 1 - Y  

U t u  
1 , l  2 , 2  

( 1 - 9  

l t V  e = 0 29-1 1 t)’ U - u  
+- -- 2 , l  1 , 2  

, 1  - (  2 ) , 2  Eh ‘1 1 - 9  0 , 1  

l t 9  E = 0 29-2 -- 1 t3 U - u  
291 182 

) ,z  * (  2 ) , I  Eh ’2 1 - 3  0,2 



and 

1 -v - D(l  - V ) K  - -  M = O  29-3 
G - G  

2 , 1  1 , 2  
t G  

G1, 1 2 , 2  
( 1 i - P  ) , 1 - (  2 ), 2 1 , l  1 t9 0 , l  

= 0 29-4 l S 2 )  1 -3 - D ( l  - V  )K 2 , 2  - -  14-9 Mo,2 
, 1  

G 1 , l  
( I t 9  

It is known that the general solution of the stretching problem in the 

absence of surface load and thermal s t ra in  may be expressed in terms 

of analytic functions of the complex variable 

2 
z = x  t i x  

1 
30 

If the load components and the initial s t ra in  a r e  deleted f rom eqs. 28- 1 , 2  

these reduce to Cauchy-Riemann conditions allowing to write 

U - u  2 , l  1 , 2  u t u  
= f ' (z )  

191 282 t i  
1 - 9  2 

The superscript  * wil l  not be used h e r e  for simplicity of notation. 

31 

f ' (z )  in eq. 31 is an a rb i t ra ry  analytic function of z. 

venience as the derivative of an a rb i t r a ry  analytic function f(z). 

let subscripts r and i denote r ea l  and imaginary par ts ,  respectively, of 

a complex number we can write 

It is taken for con- 

If we 

f = f  
r , l  i , 2  

f = - f  r ,  2 i, 1 

and f rom eq. 31 

i ,  2 
(1 - Y I f r ,  1 = (1  - 3) f  u t u  1 , 1  2 9 2  

U - u  = 2f = -2f 
2 , l  1.2 i, 1 r ,  2 

32- 1 

32-2 

33- 1 

33-2 

Again eqa.  33 reduce to Cauchy Riemann conditions when the right hand 

sides a r e  put to zero. The particular solution needed to write the general  

14 



solution of eqs. 3 3  is easily found on 

harmonic functions. The resul t  may 
I , 
I 3 - l J  1 t 3  - - u t i u  =-f-- 2,f' t g 

1 2 4 4 

noting that f and f a r e  

be written in the form 
r ,  1 i ,  2 

34  

I where f and g a r e  a rb i t r a ry  analytic functions of z and a bar ,  such a s  
- 

in g,  indicates the complex number conjugate of the number without . 

I the ba r ,  i. e. 
- 
g = gr  - igi 
- 
f ' = f  - i f  = f  t i f  

Similarly,  for  the horn-ogeneous problem of the bending of plates 

write the general  solution for the s t r e s s  functions in the form 

r ,  1 i ,  1 i , 2  r , 2  

zF't G 3 t J  1 - 3  
G l t i G  2 =-F-- 4 4 

35-1 

35-2 

we can 

3 6  

where F and G a r e  a rb i t ra ry  analytic functions. 

the s t ra ins  and the s t r e s s  resultants of the stretching problem in t e r m s  

of f and g. Eq. 31 yields directly 

Eq. 3 4  allows expressing 

+ i d  = f '  
€11 i- €22  

1 - Y  3 

and using eq. 34 and the s t ra in  displacement relations, obtain 

E - €22 t i( L12 t €21) = - 14-9 zFl +2g, 
11 2 

37- 1 

3 7 - 2  

In o rde r  to express  the s t r e s s  function 

eqs. 17 with use  of the s t r e s s  s t ra in  relations and the s t r e s s - s t r e s s  

function relations yield 

in t e rms  of the analytic functions, 

I 

1 
1 - 9  Eh r ,  1 

€ 1 1  €22 = - - y  = f  38-1 

38-2 
1 1 2 - -  €11 - €22 

1 + Y  - Eh (y,22 \y, 11) = -  ? (Xlfr,  11 ' X2fi ,  11) g g r , l  



38-3 1 t x f  ) - - -  €12  €21 = -  1 - y , 1 2 = - - ( - x f  1 
2(1 trr ) Eh 4 1 i , 1 1  2 r , 1 1  1 t 3  g i ,1  

The 3 equations for a r e  compatible. The general solution of eq. 38-1 

may be written in the fo rm 

h )  ( X f  t x f  - -  4 Eh 
\y=4 l r  2 i  1 t J  r 39 

where h 

in eq. 39 to be also a solution of eqs. 38-2, 3 yields the condition 

is an a rb i t r a ry  harmonic function. Requiring 3/ a s  expressed r 

h ' = g t a  40 

where h is the analytic function having h 

complex constant. 'y may also be written in the form 

a s  r ea l  par t  and a is an a rb i t r a ry  
r 

Eh - 4 
v = - ( z f  --h) 4 l t 9  r 

41 

If f and h a r e  considered a s  the two a rb i t r a ry  analytic functions, g contains 

through eq. 40 the a rb i t r a ry  constant a which contributes only a rigid 

body translation. 

In the bending problem the equations dual of eqs. 37 and 41 a r e  

t iF = F' M1l + M22 
1 t u  3 

z F "  t 2G' 1 - v  
MZ2 - Mll  - i(Mlz t M z l )  = - - 2 

where 

H ' = G t A  

42- 1 

42-2 

42-3 

43 



We note also that 

l 7  

I The t ransverse  shears  a r e  obtained through the relations 

44 

45- 1 

45-2 

I 5. Dependent Variables a t  the Boundary. 

~ 

Consider a generally multipliconnected domain bounded by closed 

curves such as shown in Fig. 3 and le t  Q denote the angle, measured 

positively counterclockwise, between the x 

boundary curve oriented outward. 

along the normal 

curve oriented as shown in Figure 3. 

, - 
axis and the normal n to a 

1 
n wil l  denote a recti l inear coordinate 

and s wi l l  denote the arclength along the boundary 

Considering the stretching problem, the s t r e s s  resultants at the 

boundary obey the tensorial  transformation formulas 

cos 2 q t 2N12 s i n q c o s  y t N22 s in  2 q 
Nnn = N1l  

t N Z 2  cos f N = N sin Q - 2N12 s inTcos<p 2 2 
ss 11 

L L - N ) s i n q c o s q  
ns 12 (N22 11 

N = N (cos 9 - sin cp ) 

46- 1 

46-2 

46- 3 

The s t r e s s  - s t r e  s s function relations in orthogonal curvilinear coordinates 

(4)  when applied to the directions n and s at the boundary take the form I 
47- 1 

47-2 

47- 3 



4 

where i t  i s  recalled that the aster isk r e fe r s  to the homogeneous solution 

of the equilibrium equations. We note that 

y , s n #  Y n s  

and y must be interpreted as 
1 an 

48 

- 49 9, a n  - '(ns - 4 , s  lyIg 
1, N*22 and N* N* , N* , and N* a r e  related to N* nn sa  ns 

the same transformation formulas a s  eqs. 46, whence using eqs. 4 

= N12 through 
12 

N = N* - J 50- 1 
nn nn nn 

N = N *  - J  
S 8  sa  5 8  

N = N *  - J  
n s  ns ns 

where 

2 
J = J cos2y t J s in  nn 1 2 7  

2 
J = J sin2? t J cos 

8 8  1 2 9  

J =(J2 - J ) s i n y c o s q  
ne 

50-2 

50-3 

51-1 

51-2 

51-3 

J 

the x and x axes as principal axes.  The normal and tangential compo- 

nents of displacement u 

and J 1 2 
may be interpreted as the principal components of a tensor having 

1 2 
and u sat isfy the vector transformation formulas n 8 

un = u1 c o s c p t  u sin 2 c p  

u s i n ? +  u c o s 9  
2 

u = -  
S 1 

52- 1 

52-2 

The strains & and Ens = E sat isfy the same  transformation formulas nn' an 



-19 -  
4 

a s  the s t r e s s  resultants. In t e rms  of u and u they take the form (4) n S 

E = u  
nn n , n  

53- 1 

53-2 
+ 9 , s U n  

E = u  
s s  s , s  

- v,  s us' t u  € = E  = z ( u  1 
ns  sn  s , n  n , s  

5 3 - 3  

The s t ra ins  x and x a r e  obtained f rom x and x through vector 

transformation formulas as eqs. 5 2  and a r e  related to W3 through the 

relations 

n 3  s 3  1 3  2 3  

x = w  54-  1 
n3 3 , n  

s 3  3 , s  
x = w  5 4 - 2  

where 

1 w = -  
+ 9, s us) 

- u  (u 3 2 s , n  n , s  
55 

x and x a r e  related to , E and E through the compatibility 
n3 9 3  ss nn ns 

equations ( 3 ) .  

x n3 = - E  nn, s + E  sn,  n - 7 , s ' E s n  + E  ns  ) 
56- 1 

( E  - €  1 56 -2  - E  y , s  ss nn s 3  s s , n  n s , s  
x = E  

The change of in-plane curvature of the boundary curve,  except for the 

effect of the extensional s t ra in  , is 
s s  

= - (u - '4 ,sus ' . s  57 = ( QJ3 - Esn), n, s 
X = x  - € s3e s3  sn ,  s 

As done in Cartesian coordinates, 

relating them through the s t r e s s  s t r a in  relations to the homogeneous 

solution of the equilibrium equations 

, e GSs and &* nn sn 
& r e  defincd 5y 

- 3 J  ) 
1 

pnn = Erin + Eh (Jnn s s  
58- 1 

58-2 - YJnn)  €*SS - $9 + Eh (Jss 
1 - 



x* and x:' a r e  related by definition to e* , and E" = E* 

through the compatibility equations 56 and a r e  also related to x* 
n3 s3  nn s s  ns sn 

13 
and 

x*,, through vector transformation formulas. Obtain 

, siny]  

L.2 

1 x* = x - - [ (J1 - 3 J2) ,2  cos? - (J2 - Y J 1  n3 n3 Eh 

1 x* = x t - [ ( J ~  - Y J ~ ) ,  s inq  t (J - 3 J ~ )  s 3  s3 Eh 2 

Finally 

58-3 

59- 1 

5 9 - 2  

1 -  

60 1 t 3  = x t 1 (J1 - Y J 2 ) , 2  s i n < Q t ( J 2  - 
s3e Eh 

Similar relations for  the bending problem may be written using the duality 

with the stretching problem. The same correspondence a s  indicated in 

Cartesian coordinates applies provided subscripts 1 and 2 a r e  replaced 

by n and s, respectively. 

Before considering the duality in the boundary conditions , formulas 

that relate the s t r e s s  function \y and i t s  derivatives to statical  equivalents 

of the boundary s t r e s s  resultants N* and N:' wi l l  be established. Their 

dual wil l  be formulas relating w and i t s  derivatives to the changes of cu r -  
nn ns 

v a t u r e ~  a n d x  . ss ns 
Also formulas  for determining the displacements u and u f rom 

1 2 
known extensional s t ra in  E 

a boundary curve wi l l  be derived. Their dual wi l l  be formulas allowing 

the determination of the s t r e s s  functions G 1 and G 2 f rom known bending 

moment and effective t ransverse  shear  at the boundary. 

and change of in-plane curvature  x 
8 8  s3e of 

20 



6. Determination of tfJ f rom N* and N:F . Determination of w 
nn ns 

f rom x and x . 
s s  sn  

n 
I 

If fi denotes the s t r e s s  resultant vector acting at a boundary 

point, then by s ta t ics  
~ 

N = N cos? t N s in?  
n 1 2 61 

- - 
where N and N 

dicular to the x and x axes,  respectively. 

a r e  the s t r e s s  resultant vectors acting on cuts pcrpen- 1 2 

1 2 
Using the relations 

c o s q  = x = x  6 2 -  1 l , n  2 , s  

sin? = x _ -  - x  62-2  
2 ,  n 1, s 

l 

and the s t r e s s - s t r e s s  function relations the Cartesian components N 

and N of f a r e  expressed in the form 
n l  

n2 n 

N -  63-  1 n l  - Y 2 s  - J1x2,s 

6 3 - 2  

The components V and V of the resultant of the forces  acting on a segment 1 2 
I of a boundary curve, described in the positive sense between an a rb i t ra ry  
I 

origin of arclength (x O x o  ) and a current point (x x ) a t  arclength 
I 1 ’  2 1’ 2 

s f rom the origin, a r e  

S 

V 1 = I N  n l  d s = y  9 2  - Y,2-/J1 dX2 
0 0 

S S 

V 2 = f Nn2 ds  = - y, t yo, t / J2 dxl 

64- 1 

6 4 - 2  

21 

0 0 



c 

where superscr ip t  O r e f e r s  to the a rb i t r a ry  origin (xo 

boundary curve. 

x o  ) on each 
1' 2 

) of the fo rces  described 1' x2 The moment C with regard  to point (x 
3 

above has  the differential 

1 dC3 = V1 dx - V2 dx 2 

S 8 

= d\Y - y o  dxl - 'y3 dx2 -[/ J 1  dx2] dx2 - [( J 2  dxl]  dxl 
9 

0 0 

whence 

c3 = y - y o  - (xl - X o l ) y 1  - (x2 - xo2)yq2 - 

Eqs. 64 may be written more  concisely in the fo rm 

64- 3 

Y9 1 =y  1 - v*2 65-1 

1 9  V2#  and C but V*29 and C* have the same  meaning as V 3 3 where W1 

a r e  due to the homogeneous solution only. 

acting on a boundary curve that a r e  due to the homogeneous solution only 

Eqs. 65 show that if the forces  

have the resultants R* and R* and the moment M* with regard  to a 

point (xo xo ) of the boundary curve,  then y9 Cy9 and are mult i -  
1 2 3 

1' 2 9 

valued and their lljumps" after a complete turn around the boundary curve 

a r e  

22 



. 
66-2 

For  a simply connected domain not subjected to concentrated forces  o r  

torques the right hand sides of eqs. 66 a re  necessar i ly  zero  a n d y a n d  i ts  

w, 1 '  w , 2  derivatives a r e  singlevalued. In the dual bending problem, 

and w a r e  expressed in t e r m s  of integrals along a boundary curve of 

changes of curvature.  Here the duals of N::c and N:: a r e ,  respectively, n l  n2 

- x  = - x cos? - x s i n q =  w 67- 1 
s2 s s  sn 9 2s 

and 

x = - x  s i n a t x  c o s Q = - w  
s l  5 s  sn 9 1s 

67-2 

If x and x a r e  known w w and w may be determined through the 
s l  s2 , I '  1 2  

relations 

S 

w = w o  - / xsl  ds 
91 91 

0 

w = w o  -/x s 2  ds  
1 2  , 2  

0 

68-1 

68-2 

S S 

x ds  - x2 xs2 ds  s l  w = wo t (xl  - x O )  wo t (x2 - x o  )wO - x 1 ' 1  2 , 2  1 
0 

S 

0 

68-3 

0 

To the multivaluedness of 

correspond in the bending problem the dislocations 

and i ts  derivatives in the stretching problem 



&(w I 1) = - $ x  s l  ds  69- 1 

69- 3 
I 

d w = X O 1 (  d w  1) t x o  ( dw 
2 s2 

In such a case  we wi l l  say that the changes of curvature x 

the boundary curve a r e  not compatible. 

and x along ss sn 

7. Determination of u and u f rom g and x . Determination of 
1 2 ss s3e 

G and G f rom M aiid Q . 
1 2 nn ne 

If the extensional s t ra in  E 

a r e  known on a boundary curve,  the displacements may be de te r -  

and the in-plane change of curvature ss 
x 

mined by integration of the s t ra in  displacement relations 
s 3e 

u = E  
8, + T , s  n 9s 

_ -  - x  
n, s - ? s us ) ,  s s3e (u 

letting 

o =  - u  
4 s ' s  n,  s 

70- 1 

70-2 

71 

and integrating eq. 70-2 between s = 0 and s along eac-- bounLary curve 

obtain 

S 

w = u ) "  t f x s3e ds 72 

0 

o i s  the rotation of the boundary curve measured positively counterclockwise 

and i s  distinct f rom r3 Solving eqs. 52 for u and u in t e r m s  of u and 
3' 1 2 n 

u , obtain after diffe2entiation and use of eqs. 62 
S 



. 
. 

73- 1 

U = d X  X 73-2 
+ €SS 2 , s  2 ,  s 1, s 

Integrating eqs. 73 between s = 0 and s and performing integrations by 

par t s  the resul t  may be written in the form 

S S 

(x x t x ) d s  74- 1 
1 1 2 s3e s s  1 , s  u = u o  - (x2 - x.,, W 0  - x 

0 0 

s S 

) ds  74-2 - €SS x2,s  u = u o  t (xl - XO1)W0 t x 
2 2 

0 0 

In general ,  a rb i t ra r i ly  given boundary s t ra ins  E and x a r e  not 

compatible, in the sense that they imply dislocations 64 ,du and du2 

obtained f r o m  eqs. 72 and 74 by performing the integrations around 

ea;h boundary curve.  

ss s3e 

1 

75- 1 

75-2 

75-3 

76 -1 

76-2 



. 
where M* and Q* 

ibrium equations and a r e  related to M 

of eqs. 58-2 and 60, i .e.  

a r e  due to the homogeneous solution of the equil- nn ne 
and Q 

nn ne 
through relations dual 

M* = M  t D ( K  t 3 K  ) nn nn S S  nn 
77- 1 

s i n 7  t (K2 t V K  ) Q* ne = Q ne +- DIW1 t Y K 2 l J 2  c o s d - D ( l  - 3 ) K  
1 , 1  ne, 8 

letting 

the equations dual of 

S 

0 

eqs. 72 and 74 a r e  

8 s 

77-2 

78 

79- 1 

- X O  )Fo - x G1 = G o  - (x2 Q* de t / (x2Qge t M* nn x 1 , s  )de 79-2 
2 2 ne 1 

0 0 

B S 

G = G o  t (x - x o ) F o  t x  ds  - / ( x l  Q* - x M* ) d e  79-3 
2 2 1 1 1 ne 2 , s  nn 

0 0 

To given M* correspond in general  multivalued s t r e s s  functions. 

If the integrations in eqs. 79 a r e  performed around each boundary curve 

there  resul ts  equations dual of eqs. 75, 

and Q* 
nn ne 

6 F =  Q i e d s  rp 
6G1 = - x o  6 F t  ( x ~ Q \ ~ ~ M *  x ) d e  

2 nn 1 , s  

6 G  = x o  d F - f ( x l Q * , ,  - M *  nn x 2 , s  ) d e  
2 1 

80- 1 

80-2 

80-3 

If we let R* denote the resultant and M* and M* the moments with regard 

to the coordinate axes of the distributed forces  Q* 
3 1 2 

and s t r e s s  couples ne 

26 



, 
M:: acting on the boundary curve eqs. 80 s ta te  that nn 

81-1 

81-2 

81-3 

It may be interesting to note that eqs. 75 may be obtained by application of 

the theorem of Complementary virtual work, a lso called theorem of 

virtual forces ,  to a curved beam in the shape of a boundary curve having the 

s t ra ins  E and x 

length and the two faces  of the cut a r e  subjected to unit virtual forces  

acting in opposite directions and consisting of a bending moment and of 

two forces  parallel  to the coordinate axes, then eqs. 75 s ta te  the equality 

between external complementary work i. e. the dislocations and the inter-  

na l  complementary work. 

Similarly,  eqs. 80  may be obtained by application of the theorem of 

. 
s s  s 3e 

If the beam is cut a t  the a rb i t r a ry  origin of a r c -  

virtual work to the curved beam subjected to the distributed load Q" 

and to the distributed torque M* . Here d F ,  dG, and dc, are a con- 

centrated fo rce  and two concentrated moments, respectively, that 

have to be applied at one face of the cut at point (xo 

keep the beam in equilibrium. 

ne 

nn 

xo ) in o rde r  to 1' 2 

8. Duality between Boundary Conditions. 

a) Displacement Boundary Conditions in the Stretching Problem 

Stress-Function o r  F o r c e  Boundary Conditions in the Bending 

Problem 

A stretching problem where u1 and u a r e  to take specified values 2 
on the boundary is generally a well defined problem having a unique 

solution. In the dual bending problem G and G take assigned values 1 2 

27 



on the boundary. 

and the effective t ransverse  shear  Q* 

in-plane displacements of the boundary determine i ts  extensional 

strain t s s  and i t s  change of curvature x 

lem is solved by determining the displacements the remaining quan- 

tities of interest  such a s  s t ra ins  and s t r e s ses  may be computed through 

the strain-displacement relations and the s t r e s s  s t ra in  relations,  

respectively. In the dual bending problem, knowledge of the s t r e s s  

functions allows the determination of the s t r e s s  couples and t ransverse  

shears  through the s t r e s s - s t r e s s  function relations and the curvatures  

through the s t ress -s t ra in  relations. 

the determination of the s t r e s s  function \y is of no particular interest  

when the displacements and s t r e s s e s  have been determined, the de te r -  

mination of W in the bending problem may be accomplished through eqs. 

68 when applied along a path drawn inside the plate. The integration 

constants w o ,  w o  and wo in eqs. 68 pertain in the present context 

to some arb i t ra ry  point in the plate and contribute a rigid body displacement. 

The resul t  of the integrations in eqs. 68 may lead however to multivalued 

functions for  w and i t s  derivatives just  as in the stretching problem the 

determination of \y and i ts  derivatives f rom known s t r e s s  resultants may 

lead to multivalued functions. This occurs  if  the s t r e s s  resultants of the 

homogeneous solution acting on + boundary curve a r e  not self equilibrating and 

in the bending problem if the changes of curvatures  x and x along a 

boundary curve a r e  not compatible. 

a r e  imposed in the Stretching problem of a multiply connected domain 

there i s  no way of determining a pr ior i  whether the s t r e s s  resultants of 

the homogeneous solution will be self equilibrating on each boundary curve. 

Similarly there  is in general  no way of determining a pr ior i  whether s t r e s s -  

function boundary conditions in the bending problem wi l l  lead to multivalued 

functions for w and i t s  derivatives,  i. e. , to dislocations. However, s t r e s s -  

function boundary conditione do not have as immediate a physical meaning 

They determine the bending s t r e s s  couple M* nn 
at  the boundary just  as the 

ne 

. If the stretching prob- 
s3e 

Whereas in the stretching problem 

I1  , 2  

ss sn  
When displacement boundary conditions 

28 



< 

as do displacement boundary conditions in the stretching problem. 

s ider  instead that the boundary values of the s t r e s s  functions G 

a r e  to be determined f r o m  specified boundary values of the bending s t r e s s  

Con- 

and G2 1 

I couple M and the effective t ransverse  shear Q . This may be done through nn ne 
eqs. 79 which contain, however, f o r  each boundary curve,  three a rb i t ra ry  

constants Go 1 l  Go2, and F". 

problem wi th  given force boundary conditions may be formulated into an 

infinite number of bending problems with s t r e s s  function boundary conditions. 

In examining the significance of this le t  u s  examine at the same t ime the dual 

stretching problem and consider the case  where instead of displacement 

boundary conditions the extensional s t ra in  ESs and the change of curvature 

x take specified values on the boundary curves.  If E,,  and x a r e  

known on each boundary curve of a generally multipliconnected domain, the 

boundary displacements may be determined through eqs. 72 and 74 except 

f o r  a rigid body displacement associated with each curve and formed of the 

translation (u" u o  ) and of the rotation &. This is independent of whether 

E and x imply dislocations. That to each particular choice of these 

rigid body displacements corresponds a physically different problem with 

the same boundary values of € s s  and x 

boundary curves connected to f ree  rigid bodies, keeping one of the bodies 

fixed, and subjecting each of the remaining ones to a certain rigid body 

displacement by applying an a rb i t ra ry  force vector (R* 

of the plate and an a rb i t r a ry  torque M:: 

conditions determine uniquely the problem there  is a unique correspondence 

k n t ~ ~ ~ e e n  the se t  of rigid - body displacements and the se t  of forces  R:!: 1' R* 2 

and M:." To each se t  of rigid body displacements (u" u"  w " )  corresponds 

a stretching problem whose s t r e s s  function y is multivalued according to eqs. 

66. Thus in the dual bending problem to each se t  of a rb i t ra ry  constants 

Goll  Go2, and F" correspond a bending problem with dislocations. There 

follows that in o rde r  to be able to solve uniquely the bending problem with 

f o r c e  b o u n d a r y  c o n d i t i o n s  b y  m e a n s  of  s t r e s s  f u n c t i o n s  

i 
Because of these a rb i t r a ry  constants a bending 

I 

s3e s3e 

1 '  2 

9 s  s3e 

may be seen by visualizing the 
s3e 

R* ) in the plane 1' 2 
Since displacement boundary 

3' 

3' 1' 2' 
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c o n d i t i o n s  e x p r e s s i n g  g i v e n  d i s l o c a t i o n s  

6 w , 6( w ) and 6 ( 'w 1 , if any, must  be appended to the boundary 

conditions. on the right sides of eqs. 

69 are  f i r s t  expressed in terms of x , X , and x through eqs. 

67 then in t e r m s  of the stress functions by means of the s t r e s s - s t r a in  

and s t r e s s - s t r e s s  function relations. 

9 1  ,2 
In o rde r  to do this X and x s l  82  

ns nn 8 8  

This yields 

' -  F x ) -  
1 -- 1 x =  

8 2  D(l - 3  2 ) (G1, 1 ' G2,2)X2,s D(l - 9 )  ( G 2 , s  3 1 , s  

M 
0 

(K1 ' D(l  t3) x2,  s 

1 1 
2 (Gi, 1 ' G 2 , 2 ) X i , s  Dil  - i j  (GI ,  + F 3 x 2 , s  - x =  s l  

D( l  - 3 ) 

0 
M 

( K 2 t  D ( l t 3 )  )x 1 , s  

Eqs. 69 become 

D(l - Y  2 ) j ( G l ,  1 G2,2)dX1 D(l - 9 )  f F 3 & 2 '  

JG1 
M 

0 
jdX1 D ( l - Y )  

82-2 

83-1 

0 1 M 
d ( w  9 2  ) = -  D(l - V  2 ) f ( G 1 ,  1 ' G2,2) dXZ -D(;-9)fFsdx1 t#(K1 'D(1 4-9) )dx2 

83-2 

d w  ,.6( w ) t x.,d(w 2 )  t 
1 

2 f ( G l ,  1 ' G2, 2ldr  2 - D(l  -9) 4 F 3 d A -  ' 2D(1 - 9 ) 1 9 1  



f ( G 1  dxl t G  dx ) - 2 
dr  ) t 

D ( l  -3) 2 2  
0 

M 

2D(1 t V )  4 ( K 2  x1 dxl K1 x2 dx2 

-- (x;6G1 + x i 6 G 2 )  
D ( l  - 3 )  

83-4 

where 

2 2 2  
r = x l  + x 2  

1 
2 1 2  2 1  

dA =-(X dx - x dx ) 

84- 1 

84-2 

and 

The equations dual of eqs. 83 express  6 (  Y 1), 6( LtJ 2 )  anddry i. e. 

-R* , R*l, and M*3, respectively,in te rms  of the displacements, 
9 9 

2 

7-6 

Eh 6 u ,  - L 

1 t Y  
85-1 

Eh d u 2  

l t 3  
- 85-2 

Eh 
2 - x o  R* t X >  R*l - M* = 

3 2 f 1 -  3 1 1 2  

Eh f (uldxl t u dx ) t d r  ) -- E h E o  2 
2 2  14-9 x d x  t J x d x  - 

+J2 1 1 1 2 2 2 ( 1 - V )  

85-3 



I I  

where 

1 w = - ( u  - u  ) 3 2 2 , l  1 , 2  
10-6 

It may be verified that the t e r m s  in eqs .  85 containing J 

with R'kl, R*z and M*3 to f o r m  R 

boundary conditions expressing specified values of R R and M a r e  

obtained f rom eqs. 85 by deleting the as te r i sk  and the t e rms  containing 

J and J2. If it is recalled that M is the moment of the boundary forces  

with regard to the point (xo  x o  ), then the t e r m  (M t x o  R - x o  R ) in 

and J combine 1 2 
R2 and M3, respectively. Thus 1' 

1' 2 3 

1 3 

1' 2 3 1 2  2 1  
eq. 85-3 is the moment with regard to the origin of coordinates. 

If the assigned values of M* and on a boundary curve have 
nn 

the resultant R* and the moments M* and M* with regard to the coor- 3 1 2 
dinate axes then F, G and G2 must  be sought a s  multivalued functions 

experiencing around that boundary curve the Iljurnps'' required by eqs. 
1 

81. In t e rms  of G and G we can write 
n S 

6~ = 6~~ c o s q t  d% s i n T  

JG = - sin? t d~~ COST 86-2 

86-1 
n 

8 

and using eqs. 81 obtain 

6 G  = M* t - R ' k  1 ( r  2 ) "  87-2 
6 s 2 3  , n  

87-3 

where M: and M*, a r e  the normal and tangential components a t  mint 

(xol ,  xo2) of the moment vector (M* M*2). It was assumed above that 1' 

87- 1 

, i. e. the curvature of the boundary curve,  is continuous a t  (xo  x o  ). 93. s 1' 2 
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I 
If a concentrated t ransverse  shear  Q or a concentrated bending 

moment M are  acting at a point of the boundary, then, as shown by eqs. 

79, F, G1, and G have discontinuities a t  that point equal to Q,  -M s i n 7  

and Mcos cf , respectively. 
2 

I 
Consider now the case  where the bending problem with force bound- 

a r y  conditions and the stretching problem with displacement boundary 

conditions are  to be solved by means of the differential equations for  w and 

y ' ,  respectively. 

and M:: in the second problem, multivalued solutions 
1' 3 vanishing R* 

must  be sought for  w and y. 
a r e  expressed in t e r m s  of w by first expressing the effective t ransverse  

shear  

If there  a r e  dislocations in the first problem and non- 

The boundary conditions of the bending problem 

I 
88 Q = Q  f M  

ne n ns ,  s 

in t e r m s  of the s t r e s s  couples using the equilibrium equation (3) 

(M - M  ) nn, n sn, s + Y , s  nn s s  
tM Qn = M 89 

then 

Q = M  f ( M s n + M  ) +QIs  ( M n n - M  s s  1 90 ne nn, n n s  , s  

I The right hand side of eq. 90 is espressed  by means of the s t r e s s  s t ra in  

relations in the f o r m  

Through u s e  of the compatibility equation ( 3 )  

X - x  i- q ,  s(xss - Xnn) = 0 s s , n  n s , s  

eq. 91 reduces to 

Q = M  t D(xm + X  ss  ) , n  t D ( l  - Y ) x , ~ , ~  ne  0, n 

92 

93-  1 

F o r  M we have 
nn 
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93-2 M = M  + D ( x  t 9 x s s )  nn nn 0 

Eqs. 93 become boundary conditions for w upon replacing the curvatures  

by their expressions in terms of w. The resul t  may be written in the f o r m  

94-2 

It may occur that Q 

Such a case  is encountered f o r  example in a multipliconnected plate one of 

whose boundary curves is attached to a rigid body that is subjected to a 

vertical  force R and to bending moments M and M with regard to the 

coordinate axes. Then in addition to the boundary conditions specifying 

zero curvatures of the boundary curve we have the conditions 

and M 
ne nn a r e  specified only through statical  equivalents. 

3 1 2 

$ane ds = R 3 95-1 

f (x2Qne + M x )ds = M1 95-2 
nn 1 , s  

P (-X1Qne nn 2,s 
i M  x ) d s = M 2  95-3 

Eqs. 95 a r e  expressed in t e r m s  of w through u s e  of eqs. 94. 

it is noted that 

In doing this 

+ ? s w , s  
x = - w  

ns , ns  
96- 1 

is singlevalued and in the line integrals of eqs. 95-2,  3 the t e r m s  containing 

x and 
n s  

- v , s w , n  

a r e  integrated by parts. 

x = - w  
8 8  , 8 8  

This yields af ter  taking account of eqs. 67 

96-2 

- x x )ds = f(xSn x2, + x x )de = f w, d s  97- 1 s n , s  s a  1 , s  8 8  1,s 

- X  x )ds= 97-2 ss 2,s f (-x x - x x )ds = f (xsnx l , s  1 sn,s s a  2,s 

Eqs. 95 take then the f o r m  
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D{(Aw) ds = 
, n  

98-1 

D {(x2( a w ) ,  t x l ,  ~ w ) d s  = (x M t x M )ds t D ( l  - U)dw 4 2 o,n 1 , s  o 9 
- M1 98-2 

By analogy with the preceding, the displacement boundary conditions of 

a stretching problem a r e  expressed in terms of the s t r e s s  function Yby f i r s t  

determining f rom the given boundary displacements the extensional s t ra in  

E,, and the in-plane change of curvature x of the boundary curves,  

using eqs. 5 3 - 2  and 57. Then E* and X* a r e  determined using eqs. 

5 8 - 2  and 60. The procedure for expressing e* and x* in t e rms  of Y 
is dual of the procedure for  expressing M and Q in t e rms  of w. The 

dual of eqs. 94 a r e  

s3e 

ss s 3e 

8 8  s3e 

nn ne 

99-2 

The boundary conditions 99 a r e  not sufficient in general  to solve the 

problem since a s  was pointed out ear l ie r  a rb i t ra ry  rigid body displace- 

ments may be superimposed on the displacements of each boundary curve 

without a l ter ing the values of x * and E* . These rigid body displace- 

menta a r e  associated uniquely with the system of forces  R* 

mentioned ea r l i e r  and cause yland i ts  f i r s t  derivatives to be multivalued 

and to have around each boundary curve "jumps" 6(y?,), 6(*,), and dtf 

s3e ss 

RS, M$ 1' 

I 

differential  equation for  v m u s t  be sought such that yand i ts  f i r s t  deriva- 

t ives be multivalued functions. 

associated with each boundary curve may be determined after having 

solved for  the displacements by equating at one point of each boundary 

The 3 constants &(v,,), &(Cy,,), and atf 
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1 curve the displacements u 

values. In the terminology 

R:: and M:: a r e  redundants. 2 3 

and u 

of statically indeterminate s t ructures  R* 

and the ro ta t iondto  their assigned 

1’ 

2 

They may be determined without explicitly 

solving for the displacements through the theorem of virtual forces .  

the application of this theorem virtual forces  a r e  generated through arb i -  

In 

t ra ry  variations of R* R’;< and M4 according to eqs. 66, and the actual 1’ 2 3 
s t ra ins  of the plate a r e  expressed in t e rms  of 

s t ra in  and s t r  es  s - s t r e s s  function relations. 

by means of the s t r e s s -  

b) S t ress  Boundary Conditions in  The Stretching Problem. 

Curvature o r  Displacement Boundary Conditions in the Bending 

Problem. 

S t ress  boundary conditions in a stretching problem where N nn 
take assigned values on the boundary curves may be expressed in 

and 

N 

te rms  of the s t r e s s  functiony using the s t r e s s - s t r e s s  function relations. 

After a particular solution of the equilibrium equations is determined 

the boundary conditions may be formulated so that N*< 

assigned values on the boundary curves.  

may be computed in t e rms  of known boundary s t r e s s  resultants through 

eqs. 65 which a r e  reproduced below. 

ns 

and N’:< take 
nn ns 

y and i t s  f i r s t  derivatives 

y , l  = y l  4 2  100-1 

100-2 

It is recalled that superscr ipt  O r e fe r s  on each boundary curve to an 

a rb i t ra ry  origin (xo x o  ) of arclength s. V* Vx< and C* a r e  the 1’ 2 1’ 2 3 
resultants and moment, respectively, with regard to a cur ren t  boundary 

point (x x ) of the s t r e s s  resultants N* and N* acting on the a r c  

described in the positive sense between(x” 

derivative of \yis found f rom ‘y 

1’ 2 n l  n2 . The normal 1’ x2)  
x o  ) and (x 1’ 2 

and ‘0 in the form ’ ’ 2  



= yl ,  cos? t s i n y  
V ’ n  1 

l o r  

101 

where 

V+ is the tangential component at point (x x ) of the force vector (V4: ,V+ ). 
S 1’ 2 I 2  

Eqs. 100-3 and 101 show that s t r e s s  boundary conditions determine Yanu 
O 

v , n  t 

y > ,  and y o  on each boundary curve. 

will be examined subsequently. If the s t r e s s  resultants due to the homo- 

geneous solution have on a boundary curve the resultants R?; 

M then L+‘ 

complete turn around this boundary curve a re  given through eqs. 66, i. e. 

on the boundary except for t e r m s  involving 3 a rb i t r a ry  constants 

The determination of these constants 

R+2 and 1’ 
and \yare multivalued and their  jumps when making a , 1 ’  q . 2  ’‘-3 

~ 

j ( y  1) = - R*2 103-1 ’ 

103-2 S (  y 2)  = R=l 
9 

t l y  103-3 
3 

F o r  a simply connected domain without concentrated forces ,  equilibrium 

requi res  the right hand sides of eqs. 103 to  be zero  a n d y a n d  its  derivatives 

a re  signlevalued. If a concentrated force is acting within the domain of 

the plate Vand its derivatives are  multivalued since the boundary s t r e s s  

resul tants  a r e  in equilibrium with the applied concentrated force.  

concentrated forces  and a moment a r e  acting at a point of the boundary, they 

If 

V2, and Cr3 when crossing that point. 
1’ 

a r e  jump discontinuities of V* 

ThenY1,  Y J  and go through corresponding discontinuities as required 

37 



. 
by eqs. 100. 

dual of the s t r e s s  boundary conditions of the stretching problem take the 

form of assigned values f o r  the curvature  x 

boundary curve. 

boundary conditions for  w and i ts  normal  derivative w 

formulation of the stress boundary conditions of the stretching problem 

in te rms  of y a n d  y 

The boundary conditions of the bending problem that are 

and twist x on each 
88 sn  

The transformation of such boundary conditions into 

ie dual of the 
, n  

. The appropriate formulas are eqs. 68. 
, n  

Whereas in  a stretching problem stress boundary conditions a r e  

f i r s t  formulated in t e r m s  of s t r e s s  resultants and may be subsequently 

expressed in t e r m s  of the s t r e s s  function, in a bending problem displace- 

m e n t  boundary conditions a r e  usually f i r s t  formulated in terms of w and 

<ire not transformed into curvature  boundary conditions. For  a multipli- 

connected plate without dislocations boundary values assigned to w and w 

a r e  singlevalued. In the dual stretching problem the s t r e s s  resultants due 

to the homogeneous solution are self-equilibrating on each boundary curve 

and and a r e  singlevalued. 

, n  

, n  
In the bending problem, with o r  without dislocations, the speci-  

fied boundary values of w and w 

the problem. 

in te rms  of x and x using eqs. 96 they would not be sufficient to 

solve the problem in the case  of a multipliconnected domain. 

, 2 '  
fo r  this is that an  a rb i t r a ry  rigid body displacement defined by w o  

and w o  could be superimposed on each boundary curve without changing the 

values of x If one of the curves  bounding the plate is held 

fixed, the rigid body displacements applied to the remaining boundary 

curves will cause additional boundary forces  and will therefore  a l te r  the 

states of s t r e s s  and deformation. 

satisfy the same assigned values fo r  x and x . All of these problems 

may be obtained f rom one of them if one of the boundary curves  is held 

fixed and i f  all the remaining boundary curves  a r e  connected to f r e e  rigid 

a r e  usually sufficient to solve completely 
, n  

If, however, the boundary conditions were  to be formulated, 

s a  ne 
The reason  

w" 
I1'  

and x 
sa  ns  

. 

Thus an infinite number of problems 

8 8  W 



bodies subjected each to an  a rb i t r a ry  force perpendicular to the plate 

and an a rb i t r a ry  moment vector parallel  to the plate. 

Considering now the dual stretching problem it is apparent 

I that s t r e s s  boundary conditions a r e  not sufficient to solve uniquely the 

problem in the case  of a multipliconnected domain. 

stants yo 1, yo, 
The a rb i t r a ry  con- 

and y "  that appear in the boundary conditions, eqs. 
f 

100-3 and 101, a r e  dual of the constants w" w" and w" defining the 
t 1' , 2  

rigid body displacements of the boundary curves in  the bending problem. 
I 

If the constants I" and y o  were  selected in a cer ta in  manner ,  
, 1 " y 0 , 2  

they would imply multivalued displacements u 

jus t  as in the bending problem,the rigid body displacements cause,in 

generaL non-vanishing resultant force and resultant moment on the boun- 

dary  curves  and require  multivalued stress functions G In 

o rde r  to obtain a unique solution of a stretching problem with s t r e s s  

and u2, i. e., dislocations; 
1 

I 

and G2. 
1 

I boundary conditions by means of the stress funct ion\y,  conditions expres-  

I boundary conditions. These conditions a r e  eqs. 75 which were established 

sing assigned dislocations, if  any, must therefore  be appended to the 

by determining the displacements of a boundary curve f rom i ts  extensional 

s t r a in  e and i ts  in-plane change of curvature X . In the present 

context the left hand s ides  of eqs. 75 a r e  imposed dislocations and & 

X 

procedure is dual of the one followed in expressing in t e r m s  of w the resul-  

tant fo rce  and moments acting on a boundary curve,  eqs. 98. In writing 

the relations dual of eqs. 98 we note the duality relations 

s s  s3e 
and 

s s  
on the right hand sides have to be expressed in t e rms  of y/. The 

s3e 
I 

I ~ A  1 
I UT-  L 

104-2 

and 

105-1 
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M * ~  = d ~ ,  t x o  R* <=>du t X>&U 2 3  1 

4 

105-2 

3,  M1, M2, and R*3, M* The relatione between R 

form 

R 3 R* 3 - D f[(K2 + v K 1 ) ,  I%-(K1 + 9 K 2 ) ,  dxl] 

M* are  obtained in the 
1 2 

106- 1 

M1 = M*l - Df x2 [ (K2 t b'Kl), dx2 - (K1 t 3K ) dx ] - D{W1 + K 2 ) h 1  2 , 2  1 

- D ( 1 - 3 ) f ( K n s  dxz - K nn dxl)  106-2 

2 M = M:g t D$xl [ (K2 t 9 K  ) dx - (K1 t 9 K 2 ) ,  dxl] - D$ (K1 t K 2 )  dx 
2 2 1 , l  2 

The dual of eqs. 98 take the form 

f ( A \ y ) , n d s  = E h b d  - Eh f € o , n d s  t { [ ( J 2 - ~ J 1 ) , l d x 2  - ( J 1 - y J  2 ) 12 dx 1 1 
107- 1 

f ( x , ( A y I )  ,n t x  118 A y l ) d s = E h ( d u  1 t x i d U ) - ( l t V ) R 2  

7 ( J 2 - 3  J ) dX2 - ( J 1 - Y J  ) dx 2 , 2  1 -Ehf (x t x E ) ds t f x 2 [  
2 o , n  1 , s  o 1 9 1  

107-2 + #(J1+ J2)dx  1 

( x 1 ( A y  ) - x Ay )ds = - Eh( du ,  - xo  dUr ) - (1 t 9 ) R 1  
, n  2 , s  1 
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Consider now the case where the stretching problem with s t r e s s  boun- 

dary conditions and the bending problem with displacement boundary 

conditions a r e  solved by means of the displacement and stress-functions 

methods, respectively. The s t r e s s  boundary conditions must be expressed 

in t e rms  of the displacements u 

conditions in t e r m s  of the s t r e s s  functions G and G This may be done 

in the f i r s t  case  through use  of the stress-strain-displacements relations 

and in the second case  through the curva ture-s t ress -s t ress  function re la -  

tions. 

stretching problem, they a r e  dealt w i t h  directly by seeking a multivalent 

solution for the displacements. 

ditions obtained by the procedure discussed above a r e  not sufficient to 

obtain a unique solution in  the case of a multipliconnected domain. 

is due, a s  explained ea r l i e r ,  to the passage f rom w and w to curvatures 

x and x . The s t r e s s  functions G and G must be sought as multi- 

valued functions experiencing around each boundary curve the "jumps" 

defined by eqs.  8 1, i. e. 

and u 
1 2 and the displacements boundary 

1 2' 

The two procedures a r e  dual. If there are dislocations in the 

In the bending problem the boundary con- 

This 

, n  

s s  sn  1 2 

c 

The resultant force R* 3 
boundary curve may be 

equating at  one point of 

G ) = R *  
S 3 

108-1 

108-2 

108-3 

and the moments M* and M* associated with each 

determined, after solving for the deflection w by 
1 2 

each boundary curve w ,  w and w to the imposed 91 $ 2  
boundary values. 

R*3, M* and M*2 a r e  redundants. 1 
f o r  the displacements by application of the theorem of virtual forces.  

These a r e  generated by a rb i t r a ry  variations of R* 

In the terminology of statically indeterminate s t ructures  

They may be determined without solving 

M*l, and M* 
3' 2' 
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, 
The procedure is similar to (but not dual of) that described ea r l i e r  for  

the determination of R::c R* and M* in the stretching problem. 1' 2 3 

c )  Mixed Boundary Conditions. 

The case  to be considered now is one in which, in either of 

the two problems, displacement boundary conditions a r e  specified on 

part of the boundary and s t r e s s  boundary conditions a r e  specified on the 

remaining part. 

both mixed boundary conditions. 

s t r e s s  o r  displacement boundary conditions becomes in the dual problem 

the par t  of the boundary with displacement o r  s t r e s s  boundary conditions, 

respectively. 

It is apparent that a given problem and i t s  dual have 

Fur ther ,  the par t  of the boundary with 

Consider first the stretching problem of a simply connected 

domain bounded by a closed curve C and le t  C 

C where displacement and s t r e s s  boundary conditions a r e  specified, r e -  

spectively. If C and C a r e  formed each of a simple a r c  as shown in 

Fig. 4 the formulation of the dual bending problem presents  no difficulty: 

a r e  G and G2 . They determine the bending on C the dual of u and u 

s t r e s s  couple M*c and the effective t ransverse  shear  Q* . On C the 

known s t r e s s  resultants allow determiningv and through eqs. 65, 

thus their dual w and w . The dual of the a rb i t r a ry  constants \yo, O 

and y o  occuring in eqs. 65 a r e  w o ,  w o  and wo They represent  a 

rigid body displacement and may be disposed of arbi t rar i ly .  If Cd and 

C a r e  formed each of more  than one a r c  as shown in Fig. 5 there  a r e  as 

many se ts  of three constants ' y o ,  t q p ,  and yq 
One of these se t s  may be chosen arbi t rar i ly .  

unknown because the s t r e s s  resul tants  on an  a r c  of C 

arcs  of C a r e  unknown. 

the displacements w and w cannot be completely specified on C . They 

involve on each a r c  of 'C 3 unknown constants w o  , wo and w o  r ep re -  

senting a rigid body displacement of that a r c .  

and C d S 
be the par t s  of 

d S 

d 1 2 1 

nn ne S 

, n  

, n  K l  
92 , 1  12' 

S 

as  there  a r e  a r c s  in C . 
The remaining se t s  a r e  

S 

separating two 
d 

There follows that in the dual bending problem 

, n  S 

S 

S 11 , 2  
One o'f these rigid body 
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displacements may be chosen arbi t rar i ly .  

the dual bending problem, i. e. in order  to determine the rigid body 

displacements mentioned above, it i s  necessary,  in addition to satisfy- 

ing the boundary conditions in t e rms  of M and Qne, that the assigned 

values of G G and F = - G t 9 G satisfy a t  the points common 

to the a r c s  of C and C , eqs. 79. The reason for this i s  that the same 

bending s t r e s s  couple and the same effective t ransverse  shear  would 

have been obtained on C 

fied by superimposing on the displacements u 

an a rb i t r a ry  rigid body displacement. 

would cause on each a r c  of C an additional resultant force in the plane 

of the plate and an additional resultant moment vector perpendicular to 

the plate and would therefore affect the s t r e s s  function at  each point 

common to 2 a r c s  of C The 

dual of these constants define the rigid body displacements of the a r c s  

of C in the dual bending problem. The recourse to eqs. 79 may also 

be viewed in a different way. 

bending problem affect  M 

turn determine G and G according to eqs. 79. Consider now the bend- 1 2 
ing problem of a simply connected domain bounded by a closed curve C 

and let  w and w and Q*ne be specified on 

C . The dual of w and w areyland ‘y . They determine the s t r e s s  

resultants on C in the dual stretching problem. The dual of M* and 

Q* a r e  E and x . These allow determining u and u on C using 

eqs. 72 and 74, except for 3 unknown constants u i ,  u> ,  uo associated 

wi th  each a r c  of C and representing a rigid body displazeiiient cf thzt 

a rc .  

where C 

the assigned values of , and satisfy eqs. 65 a t  the points 

common to the a r c s  of C and C . d S 

In o rde r  to define uniquely 

nn 

1’ 2 n, 1 s  s 

d S 

had the original stretching problem been modi- 

and u 1 2 

d 

d of each a r c  of C 

Such rigid body displacements 

d 

and C by 3 constants y o ,  c u q  1 and Y O ,  2 ’  
d 9 

S 

The rigid body displacements of the dual 

and Qne on the a r c s  of C , and these in nn S 

be specified on C and M ~ J  
, n  d nn 

S , n  , n  

d nn 

ne SS s 3e 1 2 S 

S 
In o rde r  to define uniquely the dual stretching problem in the case 

and C d S 
a r e  formed each of more than one a r c  i t  is necessary that 

91 9 
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There remains to consider problems in which the two boundary , 

conditions a r e  one of the force type and one of the displacement type. 

For example the dual of a bending problem where w and M are  spe-  

cified on the boundary (C)  is a stretching problem wherey  and L g s  are 
nn 

specified. To w and Qne correspond y' and x . The physical 
, n  , n  s3e 

significance o f 9  and q 

found in eqs. 100 and 101. Similarly,  the dual of stretching problems 

where u and N o r  u and N a r e  specified on (C)  a r e  bending problems n n s  S nn 
where G and X n s  o r  G and X , respectively, a r e  specified. G and n S ss n 
G a r e  related to resultants of the boundary effective shear  and stress 

couple through eqs. 79. 

in t e r m s  of boundary s t r e s s  resultants may be 
In 

S 

The case  of a multipliconnected domain with mixed boundary con- 

ditions should not r a i se  any new significant questions beyond those discussed 

ear l ie r .  

9. Application of St. Venant's Principle.  

Consider a stretching problem with s t r e s s  boundary conditions on an 

a r c  AB of a boundary curve. Le t  W1, W and C* be the resultants and 

the moment with regard to B ,  respectively, of the stress resultants acting 

on AB and let  AB be oriented positively f rom A to B.  

can write 

2 3 

F r o m  eqs. 65 we 

- v*2 B A 
v , 1 -  ' y , 1 =  

= v"1 A 
B -  

y , 2  y ' , 2  

109-1 

109-2 

109-3 

If the distribution of the stress resul tants  on a r c  AB is modified keeping 

F VL~ and C* unchanged the le f t  hand s ides  of eqs.  109 remain  unchanged. 

By St. Venant's principle this modification of the boundary conditions 

affects significantly the solution only in a cer ta in  neighborhood of a r c  AB. 

1' 2 3 
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There follows that in the dual bending problem a modification of w and w 

on a r c  A B  of the boundary keeping the terminal values a t  A and B un- 

changed affects significantly the solution only in the same neighborhood 

of a r c  AB. 

values of w and w 

tive t ransverse  shear  on AB that i s  not necessarily statically equivalent 

to the original distribution. 

tribution of the boundary forces  that is required to maintain equilibrium 

must  be limited by St. Venant's principle to the neighborhood of a r c  AB. 

, n  

It i s  interesting to note that such modification of the boundary 
I 

causes  new distribution of the s t r e s s  couple and effec- 
, n  

When this is  the case  the additional redis-  

Consider now a bending problem with force boundary conditions on 

an  a r c  AB of a boundary curve. 

equivalent system of forces  the solution of the bending problem i s  modified 

significantly only in a certain neighborhood of a r c  AB. 

problem the extensional s t ra in  E 

X 

rotation a t  A and B. 

significantly the solution only in the same neighborhood of AB. 

If these forces a r e  replaced by a statically 

In the dual stretching 

and the in-plane change of curvature 
SS 

a r e  modified on a r c  A B  keeping unchanged the displacements and 
s3e 

Such modification of the boundary conditions affects 

It appears  f rom the preceding that St. Venant's principle which 

is stated usually in t e rms  of statically equivalent systems of boundary for-  

ce s  may be extended to include what might be called equivalent systems of 

boundary s t ra ins .  

10. Duality for  Anisotropic Plates.  

The duality between the problems of bending and of stretching of 

plates developed for  a homogeneous and isotropic mater ia l  wil l  now be 

generalized for  a homogeneous mater ia l  having one plane of elastic sym- 

m e t r y  that is parallel  to the middle plane of the plate. 

on the elast ic  properties of the plate, in-plane s t r e s ses  a r e  not connected 

with t r ansve r se  shear  s t ra ins  and t ransverse shear s t r e s ses  a r e  not con- 

nected with in-plane s t ra ins .  

tions a r e  writ ten in the fo rm (5)  

' 
With this restriction 

The three dimensional s t r e s s  strain re la-  
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110-1 

110-2 

110-3 

110-4 

110-5 

110-6 

111-1 
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111-3 

111-4 

Eqs. 110 contain thirteen independent elastic constants. The s t r e s s  s t ra in  

relatione for the stretching and bending problems are established by neglect- 

ing U in eqs. 111 and by adopting Kirchhoff’s hypothesis concerning the 33 
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I deformation of normals  to the plate. The following relations a r e  thus 

obtained 

112-1 ? l  ( N l l  - 9 N )t- 
1 E =- 

11 E l l h  21 22 G12h N12 

1 r2 € =- ( -  Y12 N l l  4- N 22 1 +- G12h N12 22 E22h 

M 
12 l 2  r1 

3 (Ml l  - 921 M 22 ) +  12 
c1 2h3 

x =  
11 

El lh 

12 
( F  1 M1l ' p 2  M22 M l z )  

2 x  = 
1 2  

~~~h~ 

112-2 

112-3 

113-1 

113-2 

113-3 

Eqs. 112 and 113 contain 6 independent elastic constants. 

It is m o r e  convenient for the purpose of establishing the duality to write 

eqs. 112 in the fo rm 

= a  N + a  N 
€11 11 11 '  a12N22 13 12 

+ a  N 
€ 2 2  = aZINl l  ' a22N22 23 12 

= a  N + a  N 
€12 31 11 ' a32N22 33 12 

114- 1 

114-2 

114-3 

and to solve eqs. 113 for the s t r e s s  couples in the f o r m  

47 



M l l  = b  x 11 11 ' b12 x22 ' b13 x12 

M22 = b21 11 ' b22 x 2 2  ' b23 12 

- 
M12 - b31 11 ' b32 x22 ' b33 12 

From eqs. 112 and 113 we can write 

a12 = a  21 

a = 2a31 
13 

1 

115-1 

115-2 

115-3 

116-1 

116-2 

116-3 
32 

a = 2a 
23 

116-4 
b12 = b21 

b13 = 2b31 
116-5 

116-6 
b23 = 2b32 

The matr ices  of elements a.. and b a r e  related through the relation 
1J i j  

h2 
U 1J 

[b..] =E [a..] -' 117 

The 6 independent elastic constants may be taken as a a a a 

11 ' bZ2' b339 bZ1' b13' and b 23' a and a o r  as b 

transformed into eqs. 11 5 if in addition to the duality between s t ra ins  

and s t r e s s  couples and between s t r e s s  resultants and curvatures  the 

following duality is adopted 

11' 22'  33' 12' 
Eqs. 114 a r e  

13 23 

a l l  <=> - b22 118-1 
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118-2 a <=>,b 
22 11 

a <=> -b 118-3 33 33 

I 118-4 a <=> -b 
12 2 1  

a <=> b 118-5 13 23 

13  118-6 a 23 <=> b 

~ 

Consider now the case where the material has  three orthogonal planes 

of elastic symmetry coinciding with the coordinate planes. 

orthotropic plates we have 

I 

I For such 

/ 4 1 = t 4 2 = 0  

Eqs. 112 reduce to 

1 - - 
'11 E l lh  (N1l $21 N22) 

1 E =- 
22 E22h (N22 - '12 N1l )  

E =- N12 
1 2  2Gh 

where we have let G = G12. 

Eqs. 113 solved for the stress couples take the fo rm 

1 2  22) 
- ( x  1 3  

11 
M =  lh3 

11 12(1-321 q2) 

& &  

( 22 + J21 x l l )  M22 - 1 2 ( 1 - 3  3 ) 
- 

21 12 

119 

120-1 

120-2 

120-3 

121-1  

121-2 
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12 
X 

Gh3 - -  
M12 - 6 121-3 

The correspondence that must be adopted between the elastic constants of 

the stretching and bending problems in order  that eqs. 120 and 121 be dual 

is indicated below. 

3 
E22h <=> - 1 

E l l h  12(1 - 3,, P12) 

1 lh3 - <=> - 
E 22h 12(1 - J 2 1  g12) 

1 Gh - <=> -- 
Gh 3 

3 3 < = > - 3  - 3  
21’ 12 21’ 12  

122-1 

122-2 

122-3 

122-4 

11. Examples of Dual Problems 

The examples given below are formed of pa i r s  of dual prob- 

lems. 

the problems qualitatively and may assume knowledge of their  solution. 

do not represent  a quantitative application of the duality. As a guide to 

the examples we reca l l  some dual propert ies  for  homogeneous problems. 

A direct  s t r e s s  resultant in a direction is dual of the curvature  in the per-  

pendicular direction. The in-plane change of curvature  of a curve is dual 

of the effective t ransverse  shear along the curve. 

ing problem is clamped o r  moves a s  a rigid body in the bending problem. 

An edge that moves a s  a rigid body in the Stretching problem becomes free 

in t h e  bending problem. 

The figures and the accompanying explanations a r e  meant to define 

They 

A f r e e  edge in the s t re tch-  



1 

If the forces  acting on a closed boundary curve of a multiply 

connected domain a r e  not statically equivalent to zero  there  a r e  dislo- 

cations in the dual problem emanating from that boundary curve. 

1. 

Constant tension in  
x direction 

1 

3.  

Constant extension in 
x direction 1 

Constant shear  

Constant curvature 
in  x direction 2 

Bending by constant 

22 

C o ns tan t tw i s t 
Antic1 as t ic bending 



4. 

Constant pres sure 

5. 

Pure bending 



a .  

Rotating disc 

9. 

10. 

1 1 .  

Rotating disc 

rigid 
inser t  

0 clamped 

e- 
)”.--.& 

53 



12.  

13. 

14. 

1 5 .  



16. 

17. 
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12. Summary and Conclusion 

The duality between the dependent variables of the problems of 

stretching and of bending of plates allows transforming the basic equa- 

tions of one problem into the basic equations of the other problem. 

general t e r m s  the dual correspondence holds between displacements and 

s t r e s s  functions, in-plane stress resultants and flexural curvatures  and 

twist, s t ra ins  and s t r e s s  coupled, in-plane changes of curvature  and 

effective t ransverse  shears .  

In 

Solution of the stretching problem by the displacement method is 

dual of the solution of the bending problem by the s t r e s s  function method 

and the use  of Airy 's  s t r e s s  function in the former  problem is dual of the 

use of the deflection in the la t ter .  

Displacement boundary conditions define uniquely a stretching prob- 

They may require  the s t r e s s  function and its first derivatives to be lem. 

multivalued in the case  of a multiply connected domain. 

problem boundary conditions taking the fo rm of specified values f o r  the 

s t r e s s  functions may imply dislocations. 

In the dual bending 

Boundary conditions specifying the bending stress couple and the 

effective t ransverse  shear  a r e  dual of stretching boundary conditions 

specifying the extensional s t ra in  and the in-plane change of curvature.  

Such boundary conditions do not define a unique problem in the case  of a 

multiply-connected domain. 

dislocations a r e  necessary in the bending problem and conditions specifying 

rigid body displacements of the boundary curves  a r e  necessary  in the stretch- 

ing problem. 

For  a unique problem conditions specifying 

Displacement boundary conditions define uniquely a bending problem 

but may imply multivalued stress functions in the case of a multiply connected 

domain. 

boundary values of Airy's  s t r e s s  function and of its normal  derivative may 

imply dislocations . 

In the dual stretching problem boundary conditions specifying 

Boundary conditions specifying the in-plane stress resul tants  are dual 

of bending boundary conditions specifying the f lexural  curvature  and twist 



along the boundary. 

problem in the case  of a multiply connected domain. 

conditions specifying dislocations a r e  necessary in the stretching problem 

and conditions specifying rigid body displacements of the boundary curves 

a r e  necessary in the bending problem. 

Such boundary conditions do not define a unique 

For  a unique problem 

l 

I To St. Venant's principle as  applied to statically equivalent systems 

of boundary forces  corresponds a dual principle that may be applied to 

equivalent systems of boundary deformations. 

The duality may be generalized to anisotropic plates having their 

middle plane a s  a plane of elastic symmetry and in particular to orthotropic 

plates. 
I 

A property of the duality that may be of interest  for experimental 

applications is the correspondence between mechanical and geometrical 

quantities. The former  a r e  generally "abstract" quantities that may be 

difficult o r  even impossible to measure directly while the la t ter  by their  

geometrical  character  a r e  always accessible to direct  measurement. 

example, in-plane s t ra ins  a r e  easier  to measure than s t r e s s  couples and 

displacements a r e  directly measurable while s t r e s s  functions a r e  not. 

The reduction of the bending and stretching problems to a single 

l 

I For  

mathematical  problem has  not apparently been used in a systematic way. 

In addition to i ts  theoretical interest  the dual formulation of the stretching 

and of the bending problem should be of value in the development of automatic 

and dual approximate methods of analysis. 

, 
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